From: garypr7265 @worldnet.att.net@inetgw

To: Microsoft ATR
Date: 11/10/01 3:30pm
Subject: Someone thinks you'll like this...

Someone you know, going by the name, "Gary Rost", thought
you'd find this interesting. If you don't like it,

you can yell at them. They said their email address

was garypr7265 @worldnet.att.net.

MTC-652

1, Cringely | The Pulpit

1of6

Caught on a planet of peril, he dared challenge its mon tor

NOVEMBER 8,
2001

Caught in a .NET

Don't Expect Microsoft to Give Up One Weapon
Without Acquiring Another -- How .NET Assures
the Continuation of Monopoly

By Robert X. Cringely

The proposed Microsoft settlement with the Department of
Justice has been out for several days, and there has been
more than enough ink used to say that it is a sweetheart
deal for Microsoft. The DOJ wants to get on to more
important duties like confiscating nail clippers at airports, S0 |
the deal looks good to them. But to those of us who got our
legal education from old episodes of "Law and Order," the deal stinks. How does it
restore competition? What does it do for those hundreds of competitors who are no
longer even in business because of Microsoft's monopolistic tactics? Well, those
outfits -- if they exist and if they can find the money to do so -- can file civil suits. But
most of them won't. | would like to see a class action lawsuit against Microsoft.

What the settlement seems to do is prohibit Microsoft from breaking the law IN THIS
SPECIFIC WAY for a period of five years. Imagine a murderer who shot his victims
being enjoined for five years from using a gun, but still being allowed to carry a
knife. So the best use of this space this week, given all the other pundits who have
already criticized the settlement, is for me to throw out some ideas about why
Microsoft went for it, and how their behavior will change as a result.

It is important to understand here that Microsoft management does not feel the
slightest bit of guilt. They are, as they have explained over and over again, just
trying to survive in a brutally competitive industry, one in which they could go from
winner to loser in a heartbeat. The fact that Microsoft makes in excess of 90 percent
of the profit of the entire software industry, well that's just the happy result of a lot of
hard work. Pay no mind to that $36 billion they have in the bank. And since
Microsoft doesn't feel guilty, their motivation in agreeing to this settlement is just to
get on with business. This is a very important fact to keep in mind when trying to
understand the event. This isn't Microsoft being caught and punished, it is Microsoft
finding a path back to business as usual, which is to say back to the very kind of
practices that got them here. Microsoft, confident in its innate cleverness, is willing
to give up certain old monopolistic behaviors because there are new monopolistic
behaviors now available to replace them.

Microsoft has to open-up certain Windows communication APIs to other developers,

12/11/2001 4:24 PM

I, Cningely | 'The Pulpit [YONTIIeRTIN

20f6

but there is no restriction at all on the addition of new APls. So expect a LOT of new
APIs, many of which will do nothing at all except confuse competitors. There is
nothing in the agreement that says Microsoft has to tell anyone which APIs it really
intends to use. So just like interpreted software is obfuscated to hinder would-be
copiers, expect Microsoft to obfuscate Windows, itself.

Microsoft has to allow third-party middleware, but a glaring loophole was left for
Microsoft, simply to redefine code as not being middleware. If they stop distributing
code separately and draw it into Windows, well as | read the proposed settlement,
middleware stops being middleware after 12 months. So if something new comes up
(all the old middleware is explicitly defined) Microsoft can integrate it and screw the
opposition one year after they stop distributing it separately.

These loopholes are nice, but they don't amount to the kind of leverage Microsoft
would want to have before signing away any rights. Bill Gates would want to believe
that he has a new and completely unfettered weapon so powerful that it makes
some of the older weapons completely unnecessary. He has found that weapon in
.NET.

But hey, .NET isn't even successful yet, right? It might be a big flop. Wrong. Those
who think there is any way that .NET won't be universally deployed are ignoring
Microsoft's 90 percent operating system market share. Whether people like .NET or
not, they'll get it as old computers are replaced with new ones. Within three years
NET will be everywhere whether customers actually use it or not. And that ubiquity,
rather than commercial success, is what is important to Microsoft.

Here is the deal. .NET is essentially a giant system for tracking user behavior and,
as such, will become Microsoft's most valuable tactical tool. It is a system for
tracking use of services, and the data from that tracking is available only to
Microsoft.

.NET is an integral part of Windows' communication system with all calls going
through it. This will allow Microsoft (and only Microsoft) to track the most frequently
placed calls. If the calls are going to a third-party software package, Microsoft will
know about it. This information is crucial. With it, Microsoft can know which
third-party products to ignore and which to destroy. With this information, Microsoft
can develop its own add-in packages and integrate them into the .NET framework,
thus eliminating the third-party provider. A year later, as explained above, the
problem is solved.

Alternately, Microsoft could use the information (this .NET-generated market
research that Microsoft gets for free and nobody else gets at all) to change Windows
to do service discovery giving an automatic priority to Microsoft's middleware. The
advantage here is in giving the appearance of openness without actually being
open.

These possible behaviors are not in any way proscribed by the proposed settlement
with the DOJ, yet they virtually guarantee a continuation of Microsoft's monopoly on
applications and services as long as Microsoft has an operating system monopoly.
When Microsoft talks about "innovation," this is what they mean. Nothing is going to
change.

ALY PO e

12/11/2001 4:24 PM

L, Cringely | I'he Puipit AAXM e e ek ev s paea e s aas

It is easy to criticize, but for a change, there is actually something that you and | can
do about this problem. Under the Tunney Act, the court has to open a 60-day period
for public comment before any settlement can become final. This will happen after
the settlement is entered in the Federal Register and will probably involve the court
establishing a web site. This will be your chance to say what you think shouid
happen in the case (look in the "l Like It" links for further information). My preferred
outcome is still that Microsoft be forced to sell its language business, and the
proceeds of that sale be distributed to registered users of Microsoft products. You
might think to suggest that in your comments to the court.

Finally, | have a little space left over to respond to some of the critics of last week's
column about the predicted rise of Microsoft's C# language at the expense of Java.
This column was wildly unpopular in the technical community. Remember that
unpopular is not bad for a columnist. UNREAD is bad. So | thank all those people
who got upset and told their friends to read what idiotic things | had written. But |
also stand by my words. So here are the typical complaints followed by my typical
responses. Thanks go to those nerds who provided such pithy criticism and
especially to those who helped me sound halfway intelligent in my response. For
those whose eyes glaze over when the talk gets technical, just reread the first part
of this column and get mad at Microsoft all over again.

Criticism 1: C# Apps are tied to Windows, Windows, Windows. While this is fine and
wonderful for windows developers, there are thousands of
UNIX/Mac/mainframe/PalmOS/etc developers out there that will be left high and dry.
And let's not forget Java runs on everything from mainframes to smart cards.

Bob's reply: Java won't die and | never said it would. Java didn't kill C++ -- it just
stole market share. Visual BASIC was one of the biggest languages of the 90s yet it
was Windows-only. Unix is entrenched on the server side, but that's the fault of
Windows, not C#. So maybe we can rephrase it -- C# will dominate Java on
Windows. That's still a pretty big statement. Not to mention, C# is compiled to an IR,
making a C# runtime for Unix possible and even probable as long as it skips serious
Windows-specific APIs.

Criticism 2: The "Java is slow" myth. More recent JVMs can actually perform as well
as or BETTER than natively compiled code. This is because they do just-in-time
compilation, making the Java code as fast as native machine code. Also, there is
only so much optimization the compiler can do when you compile a program, having
no idea how it will actually be used when it is run. At runtime, there is a lot more
information available to the system as to what parts of the code are the real
bottlenecks. Recent Java implementations employ dynamic runtime optimizations,
where parts of the program that run more frequently are recompiled in an optimized
manner to improve performance. These dynamic optimization schemes are a very
exciting new field for compiler and virtual machine engineers -- and they are totally
lacking from poor old statically compiled C#. The very way that C# gets compiled
ties you to Windows, so dynamic optimization of running C# code will be all but
impossible to implement. In the long run, Java has the potential to seriously
outperform all statically compiled languages.

Bob's reply: | have very informed friends who have ripped JVMs inside out and they

3of6 12/11/2001 4:24 PM

I, Cringely | The Pulpit

4of6

can't even see HOW JVMs can be claimed to rerform better than compiled code. C
(we're not talking about C# yet, because the cnitic is talking natively compiled code,
like C) will always outperform Java. C doesn't have garbage collection, runtime type
checking, runtime array bounds checking, dynamic linking, runtime
dynamic-optimization, etc. Java just does too much for the user at runtime to ever
run as fast as C.

Here's some code:
for (int g=0;g<x;++g) a[g] = 10;

This code is legal in both C and Java. Java will array check, C will not. Every other
conceivable optimization could be applied to either language.

Whether C# will beat Java (or more precisely whether C#'s compiled version beat
Java's compiled "bytecode" remains to be seen. But we can expect compilers to
compile Java to C#'s compiled representation soon -- it is not a hard problem.

C# does introduce many of the same things that slow down Java. However, Java's
fixation on platform independence does cost it in terms of abstraction. That is, it is
abstracted farther from the architecture than C# will be (because of C#'s dedication
to Windows). We can't say for sure yet, but the C# runtime makers have the
experience of the Java runtime makers to build on and can rely what they're
underlying architecture is -- Windows. So I'd bet C# will be faster, but for now that's
just a bet.

As for just-in-time compilation, it has never, ever, made things as fast as native -
machine code. Look at Tower Technology's Tower JVM that specializes in Pomplllng
Java TO native machine code. They beat JITs easily.

About pre-runtime optimization, it simply doesn't work as elegantly as people would
like to believe. Pre-runtime optimizers can spend all week optimizing EVERY spot,
not just hotspots. The only time dynamic optimizations come into play is in inlining
virtual methods that appear to be non-virtual. DashO-Pro is a static pre-runtime Java
optimizer that can inline virtual methods with great success. Hotspot goes a little
farther. But C# will also have dynamic optimization. Saying that doing so is
impossible is just naive.

C# will JIT'd in Windows. The dynamic optimizations are sure to be implemented.
Being coupled to Windows is irrelevant. In fact, C# will have MORE optimization
opportunity because it is tied to Windows and Intel. Heck, a C# runtime could get to
the level of avoiding CPU pipeline stalls because it can be sure of what its running
on. Java could never come close to that.

When Quake 4 comes out in Java, let me know.

Criticism 3: Java is open. Sun develops Java APIls and technologies in conjunction
with hundreds of other companies and individuals around the world. Anyone in the
world can implement most Java APIs without paying Sun a dime (now if you want
that little coffee logo on your product, that's a different story, the make you pay for
interoperability testing for that). While Microsoft seems willing to "standardize" C#,

LALC AT O WAL WAL UL

12/11/2001 4:24 PM

1, Cringely | 'The Pulpit

50f6

they will probably open up the language while holding the runtime libraries close to
the vest. What good would C have been if the standard C runtime libraries were
vendor-specific? What this means for developers is a single-vendor solution, just like
Windows. A large part of Java's success comes from the fact that you can put
together applications by mixing and matching pieces from muitiple vendors and be
guaranteed easy interoperability. For example, you can build an e-commerce web
site by buying a Servlet engine from Allaire, an EJB app server from BEA, and Java
database drivers from Oracle -- and they will all work FINE together -- AND you can
pick any kind of hardware and operating system! Want your developers to work in
Windows, but deploy the app on UNIX? No problem. Want to upgrade from your
Intel-based Dell servers to Sun's new 64-CPU UliraSPARC machine? Your code
requires NO changes! You don't even need to recompile it, because Java is not
statically compiled! What's Microsoft's answer to this? Run everything Microsoft:
ASP, IIS, ADO, etc. Develop the app on Windows. Deploy the app on Windows.
Stay with Windows forever, and hope Microsoft is good about fixing the plethora of
bugs and security holes that will inevitably arise. With C#, who will supply the
runtime libraries?

Bob's reply: Java's strength surely is its standardized APIs. C might have that for
standard libraries, but branch off into networking or HTTPS and you have plenty to
choose from, which is the problem. C# will have standard libraries too. Just as Sun
provided all of Java's libs (users had no say) MS will provide all of C#'s.

The idea that software components from different vendors can be mixed together
and work FINE is an oversimplification. Even getting Java applets to work in
Netscape and IE at the same time can be a major pain. Java's platform
independence is dubious. It seems like 95 percent of your application will work
perfectly when moved to another platform like Unix and it takes another week to fix
five percent of the quirks. No problem? | disagree.

Java is "statically compiled", but it is not statically linked. And even if it was statically
linked, it runs everywhere because it is compiled in a generic stack-based
intermediate representation called bytecode. Bytecode is then interpreted or JIT'd by
some Java runtime build specifically for a given architecture. Java runtimes cannot
be built in Java, they are usually written in C or C++.

Microsoft already has supplied the runtime libraries for C#. Check the docs for .NET.
Also, we're sort of forgetting here that C# compiles to CIL (an intermediate
representation) but so does Visual BASIC and C++. In other words, modules
between these languages will interoperate seamlessly. Where Java gives you
platform independence, .NET is giving you language independence. | fully expect
Java to be added to the interoperability list too.

It is too early to be sure, but is highly likely that existing C++ and VB code can be
recompiled under Visual Studio 7 and then called and used by C# programs. That
is, every library written in VB or C++ is already a .NET library.

Criticism 4: Developers have learned long ago that single-vendor lock-in solutions
are a recipe for disaster. If you can't swap out a buggy piece with a functionally
correct one from a different vendor, you're tied to the poor-quality vendor (like
Microsoft).

LU G WY WAL PULP LA L

12/11/2001 4:24 PM

I, Lnngely | 1ne rulpi AU AP WLV LLLUIEY PUlpileaanidit

60of6

Bob's reply: And 90 perecent of the world runs Windows because...?

0S/2 was better than Windows, but that didn't matter. This is about marketing and
company strength. Microsoft has $36 billion in the bank while Sun is laying people

off.

Criticism 5: Do not discount Java simply because you don't see lots of consumer
applications written in Java. Java has serious momentum on the server side.

Bob's reply: Java GUI is dead. Go to Best Buy and look for Java apps. They aren't
there. Java's platform independence was all about satisfying a million clients running
Windows, Unix, Mac, etc. and then we abandoned Java on the client because it was
too slow and klunky.

Now we tout Java platform independence on the server as if we never had the
foresight to buy the right server in the beginning. Or even if we must upgrade, we
must upgrade to a radically different architecture. Sure, platform independence on
the server is great, but is nowhere near as grand as the original vision of Pl on the
client.

Java's true strength is its programmer productivity. It's broad set of standardized
libraries make programmers far more productive than C++ or C. Unfortunately, C#
can match that. Technical merits and zealotry aside -- Sun would BE Microsoft if
they could. Even if Java had wonderful technical merit over C# and .NET (which it
really doesn't), it would lose. That's business.

Home The Pulpit |Likelt Baloney Old Hat Tell Me When Pass it On Bob's World

12/11/2001 4:24 PM

